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The complete solution for arbitrary boundary conditions in the stresses on the edges of a 

slit is constructed from the particular solution on the effect of a given difference in the 
stresses, and from the general solution of the problem on the effect of given stresses of 
equal magnitude on the edges of the slit. This latter is equivalent to two different prob- 
lems for a composite half-plane (two rectangular wedges with different elastic charac- 

teristics) with mixed boundary conditions, which reduces to the same Wiener-Hopf equa- 

tion solved by means of factorization of the kernel [l]. 

The solution for a loading of the form rm (m 3 0 an integer) is obtained in closed 

form, and when necessary is easily generalized for a polynomial or power series loading 
with a radius of convergence exceeding the length of the slit. Expressions are presented 

for the stress intensity coefficients (m =C-3), as well as for the asymptotic values 

(m > 4). 

1. Formulrtfon of the problem, The solution of the problem for a wedge 

with a slit on the bisectrix when the stresses applied to the edges of the slit are equal is 
given in 121 by reducing the pair of integral equations to a Fredholm integral equation, 

and in [3] for the case ,of arbitrary values of the stresses on the slit edges by utilizing the 
Wiener-Hopf functional equation with the solution of the conjugate problem written in 

general form. 
A half-plane with a notch perpendicular to the boundary was considered in [4 - 71 , 

A functional Wiener-Hopf equation has been obtained in [4] for the given problem and 

the magnitude of the energy released has been calculated for a slit in a field of eccen- 

tric tension ; the case of simple tension was considered in [5 and 61, and a general solu- 
tion is given in [7] for the problem with preliminary extraction of a particular solution 

of the corresponding difference in the stresses on the slit edges. 
Let the domain occupied by the elastic body be a piecewise-homogeneous plane S 

with a slit along the segment [0, 11 of the Ox -axis (Fig. 1). The elastic constants of the 
right and left half-planes Slr2 are denoted, respectively, by (p, x; E, Y)~,z. We define 
the boundary stresses at point y = & 0 of the slit edges by equalities 

(Yl/ - ix,), 0) = s 0) -I- q (1) (Yv - iXJ_ (t) = s (l) - q (Q (1.1) 
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First fundamental problem for a piecewise-homogeneous plane with a slit 667 

where s(t), q(t) are bounded complex functions for which 

q((J = !I(!) = 0 

Let us construct some particular solution of the problem with zero stresses at infinity 
which satisfies the condition 

(YV - fXy)+ (t) - (Y” - f&)-(t) = 3q (1) (1.2) 
at points of the slit. 

For the homogeneous domain S the considered particular solution of the problem can 
be taken as ( [8], p.441) (1.3) 

[(I’, ‘I’]+ (z, 1) df, CD* (z, z) = f$, 9 Q (0 
Y+ (2, 1) =(--z - ~ 

v 
(f - 2)’ 

The equilibrium and continuity conditions on the line z = 0 

@(+Oi.Y)+(‘D -zw-Y)(+o, y)=Q((-0, y)+(a)---a),-Y)(-0, y) 

j++o, Y)-+zw-Y)(+O,y) - $Il(_O, y) - & (a, - zw-Y)(- 0, y) 

are satisfied identically if we put (91 
220 

0 (2) = c,K (2) + c& (z), o,(- z) - 13’ (-z) - q (- z) = c,K (z) - c,L (2) 

X<O 

@ (4 = 4 (4 + c,L (4 5 (-z) - a (-2) - F(--z) = c,K (z) - c3L (I) 

Here K (z) and L (z) are holomorphic in the domain S 

cr = (x1 + 01)-l, cg = (1 + ax2)+, ~=a@,+ I), c4= xl+ 1, a=pl/pl 

Extracting the singularity I@,, Y] * (2, t), and integrating in conformity with (I. 3), we 
obtain the solution of the problem (1.2) as 

1 
c4 

K (2) = 2nj~ S[ Q (4 
Cl (1 - 2) + 

9 (1) 2G?i 
CP (’ + 2) - cz (’ + 2)’ d1 

v 
3 

1 (1.4) 

L(z)=& 
S[ 

Q (1) Q (1) 2t4 (1) -_- _ 
t-2 t+z + (’ + 2)2 dt v 1 

The stresses in the solution (1.4) are bounded everywhere including the points 0 and 
0, (since q (0) = q (1) = 0). and vanish at infinity. 

Without limiting the generality, we can put q (t)=O 
in (1.1) and can consider two problems with the fol- 
lowing boundary conditions : 

WV]+ (t) = [YJ_ (t) = Res (t) 

[X,1+ (t) = [X,1_ (t) = 0 (1.5) 

[YJ+ (t) = [YJ_ (t) = 0 

Fig. 1 [X,]+(t) = [X,1_ (t) = Im s (t) (l.G) 

Conditions (1.5) result in a symmetric, and (1.6) a skew-symmetric stress-strain state 
of the system relative to the x-axis ; the corresponding problems are henceforth called 
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symmetric and skew-symmetric. 

Let us seek the solution of problems.belonging to the class of stress-strain states in 
which the displacements are bounded everywhere, but the stresses are bounded.everywhere 
except the points 0, 0, where they have polar singularities jwith exponent Q at the 

point 0, , and exponent dependent on the relationships between the elastic constants 
[lo] at the point O), and equal zero at infinity. Because the principal vector of the stress 
resultants applied to the slit edges is zero:and the displacements are unique, estimates 
of the form (1.7) 
11 + iv = o (z-l), X + iY = (X + iY), + 0 (2-l), X,, X,, Y, = 0 (f-?) 

hold for an arbjtrarv point M (z) (1~1 > 1)., h w ere U, V are displacements of the 
point M (z), X + iY is the principal vector of the stress resultants ori an arbitrary 
arc OM, (X + iY), is a constant. 

2. Rcductlon of fundamental problem, to 8 Wien@r-Hopf func- 
tional equation. Let us introduce polar coordinates r, 8 (Fig. 1) and associated 
quantities into the considerations, the stresses ur, ~,s, ~0; the displacements up, us, 
and also functions R, 6 of the form 

I?+ie=-- (X + iY), exp (- 2 'e) + j(rr9 + ia3)dr 
0 

In conformity with (1.7), for r > 1 the following relationships are satisfied 

f(*) = 0 (r-l), f(‘) = (U,, Ue, R, 0)(r, 8) (i = 1, 2, 3, 4) 

g(f) = 0 (r-a), g(f) = ( aur au, 
ar’ar9 Ge, 09, 0, 

> 
(i = 1,2,3,4, 5) 

a/(‘) 
g(f) = ar (i= 1, . . ., 4), g(S) = yg(41 + Eg (1) (2.1) 

The quantities f(*) are bounded everywhere, and the quantities g(‘) are bounded every- 

where except the points 0, 0, where they have polar singularities. Hence, Melliti trans- 
formations of the form 

(7, g)(‘)(e, p) = r(f; g)(‘) (r, 0) +I&; Rep=P, Imp=h (2.2) 
0 

g(Q (e, p) = -(p - l)jti) (e, p- 1) (i= 1, , . ., 4) 

p (e, p) = (q(4) + Ep) (e, p) 
exist. 

The functions jCi) (i = I,..., 4) 
and g(” (i = I,. . ., 5) 

are hence holomorphic in the strip 0 < /J ( 1, 
in the strip 1 f b ( 2 in conformity with (2.1). 

All the mentioned transformations can be represented as ( [l], p.24) 

(7, g)(i) (e, P) = (ii, g)+(*) (0, PI + (7, ifP (es P) (2.3) 

(7, g)+(f) (0, P) = 5 if, d’) (r, 0) 991~, (7, g)_(f) (e, p) = r (f, gf) (r, ey-+dr 

where the j(i) (0, i) are holomorphic, respectively, in the halt-planes fi > 0, fl ( 1, 
and the 2:) (0, p) in the half-planes fi > 1, p < 2 , respectively. 
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The conditions 

‘r(s) (0, p) = j(a) (n, p) = y*’ (It, p) = 0 9 j(i) (n / 2 - 0, p) = Tti) (n I 2 + 0,~) (2.4) 

are satisfied in the symmetric problem. 
It is easy to represent the general solution of the problem in terms of an as yet unknown 

transformation j(*) (0, p). The component y4) (6, p) say, is given by Formulas 

0 < 0 d ‘/an 

(XI + 1) sin pnT(‘) (6, ri) 
(2.5) 

2PP) (0, P) 
=(p-~)cos[(P+1)(n-e)1-~P+~)co~~(P--)(~--)l+ 

+ (a- ~)cl(2p+~)~(p-~)c08(p+~~ecpcos(~-~i)~l-(axa--~~~2~o~(~-~i)~ 

'/lJr < 0 < Jx 

sin pfi’i(“) (0. P) 
-2g(a) (0, PI 

= ca (p- 1) co9 [(p + 1) (It-e)1 + [SP- s@P+ I)1 ox [(P- 4) (Jc- e)l 

where the expressions for the remaining components 7’) (6, P) (t= 1, 2, 3) are complete- 

ly analogous. 
The conditions 

j(4) (0, p) = 7@) (II, p) = 7” (n, p) = 0, 7” (n / 2 - 0, p) = T(‘) (n / 2 + 0, p) (2.6) 

are satisfied in the skew-symmetric problem. 
The component j@) (6, p) is given by Formulas 

0 Q 8 G van (2.7) 

(x1 + 1) sin pnjC3) (e, p) 

qd(‘) (0 P) 
=-~P+~~c~[(P+~)(~-~~)~+(P--~cOS[(P--~)(~-~~)~+ 

+ (a- ~~~~(ZP-~~~(P+~)~O~(P+~)e+P~O~(p-~)ei-(axl--xl~~~~0~~P-i)e 
11~2t < 8 6 n 

sin pnjt3) (e, p) 

2pi” (9, P) 
=-c~(Pt-1)cos[(P+l)(~-~l)- 

- rcrp - Cl (2P - ~)lcO~t(~-i~(fi-e8)1 
and are completely analogous to the expressions for the other components 7(‘) (6, p) (1 = 
= 1.2.4) where the transformant f(t) (0, p) is to be sought. 

The boundary conditions of the symmetric problem are given by the equalities 

j(s) (0 p) = fl’“” (0 p) 9 9 9 f(l) (0 p) = j 9 (4) (0 p) + 7 - 9 + (4) (p) (2.8) 

7+(4) (PI = -~+frw+S(t)dt 
6 0 

in conjunction with (2.4). 
The boundary conditions of the skew-symmetric problem are given by 

j(l) (0 p) = i; (l) (0 p) 9 + ” Y3) (0, P) = F3) (09 P) + j+(3) (P) (2.9) 

7J3) (P) = -ZK+‘s rp-ldrS Im s (1) dt 

0 0 

in combination with (A. 6). 
Substituting (8.5) into (2.8) and (A. 7) into (2.9) yields the same equality 
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H@)P+(P)- Q_(P) =-F+(P)(O<P<f), H(p) =, *Plh@) 
(xl + i) sin pn (2.10) 

h(p)=cospn-dpq-b, d=- ‘,fT;) , b=-l- 

p, (P) = (f’? 7”‘) (0, p), Q_ (P) = (7”, f”)_(O, P), F+ (P) = if@“‘, f@))+(p) 

which is a Wiener-Hopf functional equation to seek the unknown transformants P, (p), 
Q_ (p), where an additional condition is needed to determine the constant (Y, X), in 

the expression F+ (p):. 
The stresses (aa, z,,,) (r, 0) in the appropriate problems are bounded everywhere except 

at the point r - 1 in whose neighborhood there are singularities of the form (N, T) 

(r - 1) -‘IS (N, 7’ are coefficients of the normal and tangential stress intensity, respec- 

tively), therefore, the principal parts of the functions (g(*), g\a)) (r, 0) are representable 
as (N, !I’) (In r)“l’ for r > 1 . Hence, for large I P 1 in the regularity half-plane (p < 2) 
of the transformant (g_-‘*’ (0, p) ~_@~) (0, p) we obtain the estimates 

03 

g9 (0, p) = 
s 

g(‘) (r, 0).exp (p In r) d In r _ Nr (I”) - 7 J-I”!2 + 0 (p-l) 1 
In i-0 

co 
(2.11) 

g-c3) (0, p) = 
s 

gc3) (r, 0) oxp (p In r) d In r = a P -+o(P--') -‘/* 

Inr=o 

By virtue of the boundedness of the functions (g (4), g(“)) (r, 0)~ in the interval [O, 11 
analogous estimates hold for the transformants (6 (4), $‘j) (0, p) in the strip 1 Q p < 2. 

In conformity with (2.2). an estimate of the form 0 (p-‘/3 is valid for the transformant 
(7c4J, y(“)) (0, p) in the strip. 0< fi < 1, and by virtue of the boundedness of H (p) in the 

mentioned strip, the last estimate also holds for the transformants (yC2), f(t)) (0, p). We 

obtain -j(L) (0, p) - 0 (p--“2) (O<j3<1, 1=1,...,4) (2.12) 

Let us note an important particular case. For 0 < r < 1 let 

(gt4), gC3& (r, 0) = rm (m = 0, 1, . . .) (2.13) 

We have then 
.F+ (P) = - p 

(Y, X)0 + 1 

(mff)(P+m+1) 
(2.14) 

3, Factorisrtion of the function II(p) and tolution of (2.10). 
Let P* = Be f i& be the major root, in absolute value, of the function h @) 

cos &rt ch h,n = d (fi,” - 3~~2) -b, sin fi*n sh h,n = - 2dB&, (3.1) 

An appropriate analysis shows that the equalities (3.1) can be satisfied if relationships 
of the following kind (1; is an integer) 

p* = 2k + i0 (In Ic) + 0 (/c-l In Ic) (d > 0) 

p* = 2k- 1 +iO(Ink)+O(k-llnk) (d < 0) 

are satisfied. 
The quantities pi,- p*,- pi will also be the desired roots (the latter two because 

of the evenness of h (p)) . 
Near the origin, the function h (p) has different real roots, in particular, whose value 

may be arbitrarily large for sufflciexitly small values of the quantity 1 -‘a . However, 
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direct calculations easily verify that there exist 2Et -I- 1 roots of the function h @) for 

values of the constant 01 in the interval (0 < a < 1) in the strip 0 c b < 2/t$J/i , 
and there are 2k roots of the same function for values of the constan l/a .In the range 

(0 6 l/a < 1) . H ence, a countable set of roots with positive abscissas can be enu- 

merated as follows: PO, PI, PZ,..., Psr-I, pa ,... (d > 0); pl, pa, . . . . pt~_l, pa ,... 
*** (d < 0). 

The first root Po,r is always a real number belonging to the interval [O. 11, and for 
large k formulas of the following kind hold 

&k-l = 2k + i0 (In k) + 0 (k-lln k), p2k = Ar_t (d> 0) 

Psr_t = 2k - 1 -I- i0 (In k) i- 0 (k-l h k), pzg = &k_I (d < 0) 
(3.2) 

Roots with negative abscissas can be enumerated analogously: p_,, = - p. (d> O), 
p-zk+l = -Ppzf-1, p-2k = -P2k (k = 1, 2, . ...) 

As has been shown in 1111, by virtue of (3, P) infinite products of the form 

converge absolutely and uniformly in the half-planes p > - po,V The considered infi- 
nite products hence tend to finite limits when-] p [ --, 00 in the corresponding half-planes. 
Taking account of Formula [r (p)]_~ 

(C is the Euler-Mascheroni constant), and the resulting identities 

--P = e-Cp/2 l? (I/& [2F (p)]-1 

we arrive at the conclusion that infinite products of the form 

w,,= fi (1+ -e)(i+$,,~ 
p2k--2 k=l 

@ > 0) 

natPI= fi (1+ 
k=l 

5-3 (i+~)ex~2~ @<(‘I 

converge absolutely and uniformly in the considered half-planes, and for 1 p I+ 00 the 
following estimates hold: 

II, (p) = eBcp IPF (*/aP)l-a 0 (1) (d > ‘3 

ns (~1 k eDcp Ir (l/lp)l~ [r (p)r2 0 (1) G<O) 
(3.3) 

We factorize the function h (p) as follows: 
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h (PI = A+ (PI h- (PI, JL (PI = h+ (- PI 

*+ (PI = 
(I- e 2-p@ (Jbf P / Ad n1 (P) (d > 0) 
(1 - b)% 2PeCPlT* (p) (d<O) 

(3.4) 

Taking account of the known formula IT / Sin pn = I” (P) I (1 - P) , we furthermore 
factorize the function H (p) 

H+ (P) _- 
H(P)-H_(p)’ H- (p) = - pH,+ ;_ p) (3.5) 

H* (P) = [n (:I 1) 1 
‘Is I- (P) h+ (P), H- (P) = ( [ fi ($; *)] ” I’ (1 - P) h- (P)}-’ 

where H+ (p) is regular for g > 0, and H_ (p) for p < PO,I. For large 1 p 1 estimates 

resulting directly from (3.3) - (3.5) hold 

H, (P) = 
2-peCP (i + p / po) emcp r (P) 

0 (1) = 
2-p r (P) 

(Pr(P/2)la P v (P/~)IS O @) 

H (p) = 2Pecp Ir (pi2)la e4p r(p) o (i) t2P [r ($/ 2)la 
11’ (P)lS r (P) 0 (1) 

(d > 0) 

(d<O) 

Utilizing formulas of doubling the gamma function, we have 

r (P i 2 + va) 
H+(P)= pr(p,2) G(i) (d>6), H, (P) = ,’ (; :“2’;!,,) 0 (1) (d < 0) 

Applying the Stirling formula, we obtain 

r (p / 2 + 11,) m (p / 2)% r (p I2), a+ (P) - P-? [G f 9 (i)l (3.6) 

H._ (p) - p”‘a I(W’ + 0 (I)) 

where G is a constant to be determined. By virtue of (3.5),(3.6), in the strip 
0 < p < poll of regularity of the functions H (p), If* (p) we have for large 1 p 1 

H(p) = f G’ + o (1) (3.7) 

From (2.10) and (3. ‘7) we obtain the value G =[4p1 / (x,-i- i)r’* for the constant G , 
and we arrive at the following asymptotic formulas: 

‘18 

(IPI+~H+(P)- - C;lJ 
p-‘l’ H_(p)-_-i(&rpJh (3.8) 

Let us turn to the solution of the functional equation (2.10). In the strip 0 < p< po,, 
we have 

H+ Ip) P+ @) - H- @) Q- @) = fi- (P) F+ @) (3.9) 
Taking account of (2.8),(&g) and (3.8). we obtain the estimate 0 (p-'/z) for 

H_ 0;) F+ fp) . In any interior strip 0 < fL Q p < p+ < po,l we have [l] 

H- @) F, @) = E+ @) + E- (P) (3.10) 

Here the E* (p) are regular in the half-planes 8 > p_ and p < PA, respectively. 
We obtain (,[l]. p. 49) 

B+ (P) p+ @i - E+ 06) = J @I, IL $4 Q- @I + E- 64 = J @I (3.11) 
where *J (p) is an analytic function in the whole p plane. Let us assume compliance 
with the condition 

IQ 0) = o (1) (IPI+ oo) (3.12) 

Then J (ib) 3 0 by virtue of (2. PO) and (3.8). and, moreover, we have according to 

(3.11) 
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ff+ bd 4 (PI - E+ (p) = 0 (3.13) 

UP) Q-cp~+K(pp)=o (3.14) 
Combining (3.10) and (3.14), we obtain relationship 

K(P) P’, P) (0, P) - E+ (PI = 0 (3.15) 
since f’+ fp) + Q_ (p) = (P, P)‘(O, p) in conformity with (2.10). Therefore, 

taking account of (3.13) and (3.15) the condition (3.12) results in the following solution 

of the problem: 
(f’s’, j(l)) (0, p) =. * , (F? ff3)) (09 P) = j# (3.16) 

Let us now consider the particular case of a power loading with integer exponent 

defined by (2.13),(2.14) on the slit. We have 

e+ (P) = - 
K.. (0) (Y. Xhl + H_(-m--1) 

P (m+QfP+“+V 
(3.17) 

K (PI = H_ (p) [ - y + 
1 

(m+i)(p+ns+l) -E+(p) I 

Hence, there results directly that (3.12) is satisfied and Eqs. (3.16) are true. 
In conformity with (2. Ii?), the left sides of (9.16) have order 0 (p’) for 1 pi -, Q) , and 

the right sides should have the same order, which taking account of (3,8) yields 

- H- (0) (Y. X)o + 
H_(-m--l) o 

m+i = (3.18) 

It is expedient to eliminate the constants (Y, X)s from (3.17), (3.18) ; we hence 

obtain finally 
B+(P)=- 

H-(-m--_) 

p@+m+Q 
(3.19) 

(j”, ‘i(l)) (0, p) = - 
H_(-ml-i) 

p(p+m+4H+(~)’ 
(p, p, (0 p) = - 

H_(-m--l) 
, P(P+m+uJL(P) 

Taking account of the infinite product representation of II’ @)l+, and of the identity 

the functions fl_& (p) can be given the following form which is more convenient for 

practical calculations : 

H+ (P) = [ “n’$;) 1 
VI II+ (Ph H-(P)=- ~~i~~~f~]d’*pn+~_p~ f!JO) 

Let us note the limiting case FI I p1 = i 1 a I: 0 (free right half-plane with a notch). 

We have 

41rlh (x) 
H @) =(x~ + *) sin px * h (PI =cospn+2~-ii, pi=p_1=0, m=l 

Now the function H (p) does not have a pole at the origin, as before, but a radfcal, 
and the factorization formulas change correspondingly 
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H+ (P) -- 
H (p) - H, (p) ’ H-(P)= H+f_p) * H+ (PI = [n (2; 

‘I1 

i) 1 I- (PI h+ (PI 

h+ (p) = (a” - 4)‘6 @* #t-J (3.2i) 

For large I p 1 ‘the following asymptotic relationships are valid 

‘h *, 
P ‘1 

J/n 
p’l¶ (3.22) 

If condition (3.12) is satisfied, then (3.16) remain valid for the general loading case, 
where the function~F+ (p) is defined by (2.8). (2.9) in which we should put (%‘, x)s = 0. 

For the particular case of an rm loading (3.16) becomes 

E+ (PI = 
H_(-m-_-1) 

(m+u(P+m+u ’ 
(7(“), j”‘) (0, p) = 

H_(-m-i) 

(m + 1) (P + m + 1) H+ (PI 

(T”, 7’8’) (0, p) = 
H_ (-m- 1) 

(~+WP+~+VH_(P) 
(3.23) 

where the solution (3.33) satisfies condition (2.12) by virtue of (3.22). 

4. Strrra concentration near the end8 of the Ilit, The transformants 
7’) (0, p) satisfy condition (2.12) in the obtained solutions for power law loadings 

(3.19), (3.22), and the corresponding functions remain bounded for 8 = 0 (0 < r <. co), 

the aansformants g -(‘) (0, p) are 0 f the order 0 (p-‘/s) for large lp 1, and hence, the 

corresponding functions have a polar singularity at the point 4 with a polarity exponent 
l/a, as has been specified earlier (Section 1). To determine the stress intensity coeffici- 

ents in the neighborhood of the point O1 (Iv, T),,, in the presence of the loading(2.13). 

according to (2.2). (2.11). (3.19). (3.23), we obtain in the general and limit cases 

(4.1) 

- Pl nu = [n(~L;~)]YgH_(-m--l)=(m+l)I‘(m:i)h+(m+~) (++O) 

-((NJ),=- 

Taking account of (3.8). (3.22). the following asymptotic formulas result from (4.1) : 
(Nf an - in (m + i)P (m > 1) (4.2) 

Values of the intensity coefficients (N,. T):’ for a slit of length 1 are (iv, T),,,lm+“‘, 

Let the loading on a slit of length 4 be given as a power series 

(g(4), g(3)) (r, 0) = ; Udrn, p=lim~a,~-~m>l (0 6 r c 4 (4.3) 
m--a 

where p is the radius of convergence. 

Because of (4.2), multiplying the coefficients a, by the quantity (N, Z’), keeps the 
quantity p unchanged, and hence the following series converges 

(N, T) = ; urn (N, T)m zm+“. (4.4) 
-0 
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which in this case determines the values of the stress intensity coefficients (the series 

(4.3),(4.4) can be some polynomials, in particular). 
It follows from (4.4) that in the symmetric problem the length of an equilibrium 

crack originated in the main stress field (4.3) and propagated into the right half-plane 

S,, should satisfy a relationship such as DS - 143 

1”’ i amNmlm <s 
m=o 

(4.5) 

where K is the modulus of adhesion of the material in the right half-plane. 
Turning to a representation of the function (f, g)(g (r, 6) (t = i, . . ., 4) in the closed 

intervals 0 < a < r f rs < i, 1 < r, < r ( u+ i 00 as power series, we, as usual, 

supplement the contour of integration in the inversion formulas for 

(f, g)(‘) (r, 9) = & 

kL+im 

s (7, g)(‘) (6, P) rmp dp (i=i,...,4) 

B&W 

P (6, P) (0 < P. < i), P(6, P) (i <PI < 2) 
(4.6) 

by semicircles 1 p 1 = const in the half-planes p < p+ and p > fi. for the first and second 
intervals, respectively. It follows from (A. 5) and (2.7) that the transformants j({) (0, p) 
(1 = 1,. . .( 4) , (0 # 0) are representable as 

.7(‘)(8, p) = (‘i(*),?(l)) (0, p) csc pn 2 (c$p -k $9 (sin, cos) [(p f 1) rp] 
j 

o<cp=(e,n-e)6n/2), o<(p=n--86fi/2 

(0<6<~/2, W/2666J0 (4.7) 

where the (cjt, cjo)(‘) are constants connected with the elastic constants of the half- 
planes &,a. Proceeding from (4.7) we can obtain the following estimates for the inte- 
grals over the semicircular supplementing contours (4.6) (6 # 0) 

I wap (7, Zf) 03, P) i - (1 P VT i P 1’9 exp I- 1 P I dn (1 In h m - 0 w 

i. e, the mentioned integrals tend to zero uniformly in r in the considered intervals as 
j p 1 grows ; for 6 = 0 an analogous result follows directly from the Jordan lemma since 

- (I, 29’) (0, P) - 0 (P-Y P-9 (t = i, . . .) 4) 

Application of residue theorems for (4.6) results in the following equalities : 

(f, bP(r, e) = X’Rw tr’p13,W)(0, r)l (O<e<r<r4<U 

V, d’)P, 0) = - 2’ ha VP (?,?#‘)(Q, p)l (I < t-8 <r 6 8-I < 00) 

where ,Z’ and IY* denote uniformly convergent series of residues of the expressions 

rap (7, i)” (e, p) (t = i, . . ., 4), extended over the poles of the transformant in the 
fl < 6, and p > fi+ half-planes,respectively. The expressions g(‘) (r, 6) may be obtained 
by direct differentiation of the corresponding series fl (r, 6). 



There results directly from (4.7) that the poles of the transformant j(‘l@, pk 
(O<8<nn, i== i,.” ., 4) are poles of-the meromorphic function csc pn IT@), $‘jJ (0, PIG 
it folIows ftom the e@.~alltie’s (3,19),(3.5),(3,53),(3.81) that these poles for the loading 
(S, 13) are roots of the functions 

Therefore, in the interval 1 < r, 6 P < a-* < L-W , Laurent expansions hold 

(I = i, . * l , 4) 

which are valid to the infinitely distant point (rz = 0) in whose ~eighborho~ 

(f* 8Tf) fr, ej = 0 p-1 ?-q (t = i , , , .4), as has b&n specified earlier (1.7). In the 

interval 0 < e < r < rl < 1 the following expansions hold (i = 1, . . ., 4) 

ff*’ (F, 0) = e+1 Res p (0, - m - i) + 

which are valid to the vertex (e x=; 0) in whose neighborhood #‘I (r, 8) = 0 (rP*“)* i, e, 

are bounded (section 1). 
Expansions representable as (i/a + 0) 

g@ (J=* 0) = Po*l-Q$l Res p (5, - p. J f g * 0 (*I f, 0) (i = 1, * * *, 4) f3.9, 

can be obtained for @ {r, 0) by term by term differentiation in (4,8), where the first 
members are polar singularities at the point 0 (Section 1) with polar exponent I.-- Po,I~ 
and the second members are uniformly convergent expansions of bounded tiction~ down 

to e = 0 , In the limit case (i/u = 0) the g@ (1, 8) are regular since fi@ (F, 8) == 
= const + P RBS?({JI~, - 1). 

Therefore, in all cases the solution af the problem belongs to the considered class of 

stress-strain states (Section l), 
The stress intensity coefficknts (fit &on the coronation of the slit 0 = sz are 

given for the loading (2.13) by Formulas 

113’, ‘T,, = P&l Res $*J; f’s9 (R, - pa3 

Taking account of (8,5),(&7),(3. is),(3,5) and (4. I& we obtain 



First fundamental problem for a piecewise-homogeneous plane with a slit 677 

For the loading (4.3) on a slit of length I we have 

Table 1 

I I 

I 1 
Nm I I 

3.00 1.25 0.510 

~0.00 0.684 
00 0.788 

0 0.429 

2.3: 1.25 0.5iC 
2.50 0.54: 
5.00 0.58C 

0. 0.434 

1.H 

1.00 

5.00 0.58e 
0.00 0.624 
:O.OO 0.693 
00 0.788 

0 0.433 
0.20 0.451 
0.40 0.465 
0.60 0.478 
0.80 0.489 

2:50 :%! EY 0:547 
5.00 0.589 
0.00 0.635 

‘“doOO X:% 

7 Y a- I I m-0 I’ - m-1 
- 

EE 
D:367 
D.369 
D.372 
0.375 
0.378 

E! 
0:417 
0.44i 
0.475 

0.375 
0.378 

0.344 
0.353 
0.359 
0.365 
0.370 
0.375 
0.378 

EE 
I:421 

::g 

D.343 
1.351 
1.358 

:*z 
D1375 
D.378 
D.392 

:~~~: 
3:446 
3.475 

0.300 0.2650.631 1.023 
0.305 0.268 0.560 0.969 
0.307 0.270 0.530 0.955 
0.309 0.2710.514 0.964 
0.310 0.272 0.505 0.979 
0.312 0.2730.500 1.000 
0.313 0.274 0.474 0.970 
0.320 0.2780.398 0.976 
0.326 0.283 0.327 1.007 
0.333 0.2880.258 1.043 
8.344 $$;O.i” 1.096 

0.293 
0.299 
0.303 
0.307 
0.309 

X% 
0:320 

8% 
01347 

1 .i47 
0.919 
0.862 
0.841 

8% 
;:;g 

0:853 
0.880 
0.917 

0.364 0.307 

0.294 0.2610.710 0.721 
0.299 0.265 0.634 0.694 
0.303 0.267 0.584 0.687 
0.306 0.2690.550 0.677 
0.309 0.2710.522 0.693 
0.312 0.273 0.500 0.700 
0.313 0.274 0.417 0.688 
0.320 0.279 0.401 0.706 
0.327 0.284 0.321 0.728 
0.335 0.289 0.246 0.748 
OD /l:ll;;O.i33~ 0.775 

0.293 0.260 0.595 0.371 
0.298 0.264 0.574 0.409 
0.302 0.267 0.553 0.440 
0.306 0.269 0.534 0.465 
0.309 0.2710.516 0.483 
0.312 0.2730500 0.500 
0.313 0.274 0.481 0.499 
0.320 0.279 0.408 0.527 
0.329 0,284 0.323 0.540 
0.342 0.2930244 0.560 
8.z ;22$0.‘28 0.588 

. . 

presented in Table 1, is in good agreement with the 

m=o 
(m*=m+i-PPoJ (4.W 

-- 
where N, T are stress intensity 

coefficients at 6 = A. 
By virtue of (4.10) and (4.2) 

-- 
(N, T)m - mdtS, 

and the radius of convergence of 
(4.3) does not. change upon passing 

to (4.11). 
Presented in Table 1 are values 

of the intensity coefficients Ni for 
m = O,i,2,3, and also the first roots 
~0,~ and the function M(po,l).Accord- 
ing to a special program for the 
“Ural-‘2” computer, the real roots 

were determined first, and then com- 
plex roots of the function h (p) with 
the corresponding value of k by the 
Newton method 

#+‘I = p (J) + &,(‘+‘I 
I . 

@+‘I = _ h (p (8)) [If (p ‘“‘)]-I 

(s=O, i:. . . . r3’ 

Asymptotic values of the form 

2k+ (t/n) ln8dkr (d>O) 

2k - 1 + (t / n) In [2ii (UC - i)‘] 

(d < 0) 

were taken as the initial approxi- 
mation p*(O) in computing the com- 

plex roots. 
The error in computing the roots 

did not exceed 0.001, and the total 

error in determining the desired 

quantities was 0.01 . For m > 4 , 
the asymptotic values of (N, T),of 
the form (4. Z), whose difference 

from the actual values does not 
exceed 0.02. can be used. In the 
limit case of a half-plane with a 
notch (l/a =0) the value.No= 0.788, 
values presented in [4 - .7]. 
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